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On the Numerical Solution of Fields in Cavities
Using the Magnetic Hertz Vector

MICHEL COUTURE

Abstract —The possibility of using a representation of the electromag-
netic fields in terms of a two-component magnetic Hertz vector to calcu-
late fields and frequencies in cavities is examined. The governing equation
is the vector Helmholtz equation, and the model is tested by calculating
fields in axially symmetric cavities.

I. INTRODUCTION

N SOLVING Maxwell’s equations numerically, one may

choose to work with the integral or the differential
formulation of these equations. Weiland’s approach [1]-[3],
based on the integral formulation and his FIT method, has
been successfully applied to various problems; one of the
highlights of this method has been the fact that it is free of
spurious solutions. Methods based on the differential form
of Maxwell’s equations have also been applied successfully
to many areas, such as electrostatics, magnetostatics, and
eddy current problems. However, in the microwave area,
the approach has encountered serious difficulties in the
form of spurious solutions when attempting to solve multi-
component vector field problems in two and three dimen-
sions [4]-[11]. It is difficult to point out the true cause
(there might be several) for the occurrence of such modes.
It might be that certain properties of the differential
equations are not transmitted to the grid solutions or,
simply, that the mathematical formulations used posssess a
second set of nonphysical modes in addition to the physi-
cal ones, as was shown recently in the case of cavity
problems [10]. A common characteristic of the spurious
(nonphysical) resonant modes in several finite-clement and
finite-difference solutions of waveguides and cavities is
that they do not satisfy Maxwell’s magnetic divergence
equation V - B = 0. For this reason, this condition has been
enforced on the solution either by a penalty method [8]-[9]
or by the use of connection matrices [6]; these methods
have led to reduction and, in some cases, an elimination of
the spurious modes. In all of these approaches, the prob-
lem has been formulated in terms of the field components.

In the work to be described below, we report results of a
study in which we have examined the possibility of using
Hertz potentials to solve Maxwell’s equations numerically;
the problem considered was that of empty cavities. Al-
though Hertz’s potentials have proven useful [12]-[19] in
the analysis of waveguides and microstrips, the possibility
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of using them in a numerical calculation has not been
much explored. By introducing Hertz potentials, one re-
duces the number of differential equations to solve while
satisfying some of Maxwell’s equations identically; for
instance, one 1s assured that v:-B=0 will be satisfied.
Another motivating factor in studying these potentials is
that by appropriately choosing the gauge, any three-
dimensional electromagnetic field in vacuum can be repre-
sented by a two-component Hertz vector. However, there
are problems associated with the use of such potentials in
a numerical calculation, one of which is more complicated
boundary conditions; also, since these are gauge fields, one
faces the problem of gauge fixing.

The representation considered had the following fea-
tures.

1) The electromagnetic fields are expressed in terms of
the magnetic Hertz vector 7, where 7, is perpendicular
to the z-axis.

2) The vector , satisfies the homogeneous vector
Helmholtz equation.

3) In the case of angle-independent modes in axially
symmetric cavities, this representation leads to a formula-
tion in terms of a single variable ,, (in this particular
case, 7,, is proportional to B,), and the governing eqution
is the generalized Bessel equation [20] of order one, which
is the governing equation (or the Euler equation) of exist-
ing codes designed to do such calculations [21], [25].

The above representation has been tested by using it to
calculate modes in axially symmetric cavities; as cavity
problems are concerned, this is the simplest case of a
multicomponent vector field problem. Since the formula-
tion considered lends itself very well to the techniques used
in the SUPERFISH [21] code, we modeled our approach
on the one used in that code. This approach can be seen as
a generalization of SUPERFISH without the singularities
encountered in ULTRAFISH [22].

The paper 1s divided as follows. In Section II we briefly
recall some known results on Hertz vectors and their gauge
transformation. In Section III, a formulation of the elec-
tromagnetic fields in terms of the magnetic Hertz vector is
presented, and the remaining gauge invariance in this
representation is discussed; means of fixing the gauge are
proposed. In Section IV, the case of a cylindrical cavity is
solved analytically in this particular gauge. In Section V,
the discretization method chosen is presented. Finally, in
Section VI, results are discussed and compared with ana-
Iytical solutions, measured values, and results from

(0018-9480 ©1987 Canadian Crown Copyright



COUTURE: NUMERICAL SOLUTION OF FIELDS IN CAVITIES

URMEL [1} and ULTRAFISH [22] for several cavities and
modes. MKS units are assumed throughout.

1I. HerTZ’S VECTORS AND THEIR GAUGE
TRANSFORMATION

In the absence of charges and currents, any electromag-
netic field may be expressed in terms of two Hertz vectors
as follows [23]-[24]

(% x7) - 5oz b (7 x7)
- 1 d _
B=?E(VXW)+;LOVXVXW (1a)

where 7, and 7,
Helmholtz equatlon

- both satisfy the homogeneous vector

o 1 %
YV ‘m— :2' 57577 =0.
The vectors #, and 7,, are not uniquely defined. In fact,
there are an infinite number of possible sets 7, and 7, for
a given electromagnetic field. This high multiplicity can be
understood in terms of the following gauge transforma-
tions [24]:

(1b)
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where, for the case considered here, A, v, T, and A satisfy
(1b). The above gauge transformations allow one to repre-
sent any electromagnetic field in vacuum in several ways.
We shall now discuss a representation in terms of the
magnetic vector 7,,.

III. A REPRESENTATION IN TERMS OF A SINGLE
VECTOR 7,

The representation considered in this paper is the fol-
lowing:

_ o
E=_Hob—t(vx"’m) B=pwv XV X,

( Tmrs 7Tm070) (3)

where 7, SatISfICS the vector Helmholtz equation (1b). The
representation (3) is obtained from the one given in (1) by
gauge transformations [23]. A first step consists in
eliminating 7, by appropriately choosing A(T,\,y=0)in
(2). Then one can always define a y(I‘ A, XA =0) such that
following this transformation 7, is perpendlcular to the
z-axis. In cylindrical coordinates, one may verify that the
only possible choice leading to a general field representa-
tion and a homogeneous vector Helmholtz equation is the
elimination of the z-component of . In Cartesian coordi-
nates, one may choose to eliminate any one of the three
components of #, and still have a representation for a
general electromagnetic field with 7, satisfying the homo-
geneous vector Helmholtz equation. ‘
Even within the gauge (3), 7, is not uniquely defined
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for a given E and B. In fact, one can always add to 7, a
vector Z which is perpendicular to the z-axis and satisfies
the following equations:

—_ ¥ _

A = FZ 0.

UXZ=0 V

(42)
Thus
Z=(f*.10) (4b)

where f(r,8,t) and f*(r,8,t) are functions which do not
depend on z. Z will be referred to as the zero-field
solution since it satisfies the vector Helmholtz equation as
well as the boundary conditions but contributes nothing to
the fields E and B. Equations (4) express the remaining
gauge freedom in the representation (3) for a general
three-dimensional problem. Assuming a cos(w?) time de-
pendence for 7, let us solve for Z in the case of axially
symmetric problems.

In the case of angle-independent modes, one may verify
that the components of 7, are decoupled. TM modes are
expressed in terms of 4, and TE modes in terms of ,,,
In the case of TM modes f =0, and denoting the spatial
part of =, by ¢(r,z) and the 6- component of the mag-
netic field by B,, we have that B, = uok ¢, where k =w/c;
in that case, solving the problem in terms of the Hertz
component m,,, is equivalent to solving it in terms of B,.
In the case of TE modes, some gauge freedom remains
since f* +# 0; however, one need not worry about gauge
fixing since the best way to calculate these modes is to
treat them as TM modes (using ¢ as the variable), with the
difference that metallic surfaces are now considered as
magnetic ones (¢ =0) and magnetic ones as metallic
surfaces; the values of B,, E,, and E, obtained are then
interpreted as those of E,, B,, and B,, respectively.

We now turn to the angle-dependent modes and assume
the following spatial and time dependence:

o (r6,2,1) =msm(mo)cos(wt)
7 (. 80,2,1) = \I'(:’Z) cos (m8) cos (wt)
£0r0,0) = ) Gin (m8)cos ()
1.0, =2 cos (mbycos(r).  (3)

Solving (4) and demanding that on the axis ¥ =0 and
¥ * =0, we get after some analysis for m # 0

r d
G(r)=AJ,(kr), G*(r)=A——J,(kr) (6)

m dr
where A is some arbitrary constant which we will refer to
as the gauge constant. The gauge-fixing problem has there-
fore been narrowed down to fixing one scalar constant, 4.
In using representation (3) in a numerical calculation,
one ‘must specify not only the normalization (as we do
through (17)) but also the value of A. Equations (6)
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suggest that the gauge could be fixed by requiring that at
almost any off-axis point P = (r,, z,)

(7)
where ¢; and ¢, are arbitrary constants which could also
be set to zero; (7) is always possible provided kr, is not a
zero of J,, or of 3J,, /dr. Another option exists if there are
magnetic symmetry planes; one may verify that on such
planes (z = constant) the r dependence of ¥ and ¥* is
exactly that of G and G *, so that one may fix the gauge by
demanding that on one of these planes

= *
Y=cor¥*=c¢,

(8)

Let us conclude this section with a few remarks. First,
we note that egs. (4) are not sufficient to determine Z
uniquely for a given frequency. For example, in the axially
symmetric case, the general solution of (4) is G(r)=
AJ (kr)+ DY, (kr), where D is some arbitrary constant;
by setting ¥ =0 and ¥* =0 on the axis, we are actually
setting D = 0. Second, we stress the fact that Z satisfies
(1b) as well as the boundary conditions (since vV X Z = ()
for all frequencies. The formulation given in (3) has there-
fore two types of solutions: the physical solutions, whose
frequency spectrum is discrete, and the zero-field solu-
tions, whose spectrum is continuous, the latter being a
manifestation of the remaining gauge freedom in the for-
mulation (3). The method of fixing the gauge proposed in
(8) would in fact exclude all zero-field solutions. In the
case of (7), by appropriately choosing 7,, one could also
exclude the zero-field solutions. These gauge-fixing meth-
ods were proposed with the assumption that the remaining
gauge freedom as expressed in (4) and (6), being an
analytical property of the differential equations, would be
transferred to the grid solution. But is this assumption
correct? Since the existence of the gauge invariance is
linked to the existence of solutions whose spectrum is
continuous, the answer is not obvious. In Section VI, we
shall look into this problem through several examples, one
of which will be the cylindrical cavity since it is the
simplest one to solve analytically.

7 =0.

IV. ANALYTICAL SOLUTIONS FOR A CYLINDRICAL
CAvVITY

The solution-given in this section pertains to the cylin-
drical cavity shown in Fig. 1. Only one quarter of an
azimuthal cross section of the cavity is shown, the radius
being R and the length 2 L. Sides A4’ and BA are metallic
surfaces and BB’ is a metallic symmetry plane.
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Fig. 1. Cylindrical cavity.
with
xmn
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where x,,, is the nth root of J,; N is some arbitrary
normalization constant whose value is determined by the
position of the driving point (see Section V-D) through
(17); and A is the gauge constant.

A similar procedure is followed for TE,,,
m # 0, we get

, modes; for

[N L 3J,(7.,r) pT A 3J,(kr)
Ty, =|——— cos(—z)+————-—
P 7 ar L m dr
-sin (m@ ) cos (wt)
[ mNL J, (7.7 7 A
e [P 27 4 )
| 7 r L r
-cos(mf)cos(wt) (10)
where
= Yo 1,2,3
Tmn_R pP=La5,
and x,, is the nth root of 4J,/dr. Solutions for cases

having one or two magnetic symmetry planes are obtained
in a similar way.

V. DISCRETIZING THE PROBLEM

A. Governing Equations

We now proceed to discretize the problem in the repre-
sentation (3). Assuming the angle and time dependence
given in (5), the set of differential equations to be dis-
cretized is

Solutions for TM,,,,, modes with m # 0 are given in (9). l 2+ " l 9> _ l I
These were obtained by first solving in the gauge for which , g,2 ro 9z r* ar
7, =0 and 7,=(0,0,7,,); then, solutions in the gauge (3) k2 2 Im
were obtained through a gauge transformation. For TM + (_ _n Vr4+ —¥=0 (11)
modes, we get roor r’
) mNJ ( pT +A aJ, (kr) ] ;
), = el 1-mnr)cos( 7 ? e sin(m#8 ) cos( wt)

, N aJ,(7,,r)
e =\ "% T oy

cos(%zz) + ;—Jm(kr)} cos(m8)cos(wt)

)
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and
1d2F 14%2¥¢ 1 9¥
T ot r 9z2 r2 9r

k* m? 2m - b
+( - r3)\If+ S ¥*=0. (12)

The method of solution that we shall now briefly de-
scribe is modeled on the one used in the SUPERFISH
code. We also used SUPERFISH’s triangular mesh genera-
tor; each mesh point is surrounded by six triangles. Dif-
ference equations are obtained by the weighted residual
method. In order to generate contour integrals through
which boundary conditions will be imposed, some alge-
braic manipulations are needed. Essentially by adding and
subtracting the same terms on the left-hand sides of (11)
and (12) but changing the order of differentiation (for
instance, d/dz(3¥*/dr)and 3,/3r(d¥ */dz), one is able
to generate the appropriate contour integrals. The proce-
dure is therefore as follows. In order to avoid singularities
on the axis, we first multiply the left-hand sides of (11)
and (12) by r? after the algebraic manipulations men-
tioned above, we follow Winslow’s [26] approach and
integrate over the portion £ of the area of the dodecagon
(see Fig. 2) which is in the problem area. The vertices of
the dodecagon are alternatively the centroids of the six
adjacent triangles and the midpoints of the six adjacent
sides, as shown in Fig. 2. For interior points, £ is the total
area of the dodecagon surrounding the mesh point. For
boundary points, £ is only a fraction of the total area. For
example, let us consider a boundary going through points
(M is the mesh point) 4-M-10. One possibility is that Q
would be the area of the polygon whose corner points are
4-5-6-7-8-9-10-M; the other possibility is for @ to be
defined as the area of the polygon whose corner points are
10-11-12-1-2-3-4-M. Using Green’s theorem to reduce the
order of differentiation, the governing integral equations
are

gﬁ[(— rzﬂﬁ-k rzﬁ,«f - mr‘I’*z‘)
¢ dz ar

ar

and
23‘I’*A 28\I'*A AN 28\I'*A &
b (—r 7 F4r Brz mrYZ i+ mr e Z\-ds
Jm v m ke ]
+datr ﬁ8r~r3+ " F|-ds
—f (kzrz—mz)‘lf*+mr—{)—q,——3 ra\It* —m‘I')
Q ar ar
av av*
+r(k2r2—m2)—a—z——2mr PP ]d&l=0 (14)

'd§+¢ér2(—37—m—r—

v v
»f[(kzrz—mZ)‘I'+mr —3(r——m\I'*
Q r

291

Fig. 2. Dodecagon region of integration.

where d5 = dst, ds being an element of length of the pe-
rimeter C of © and 7 a unit vector tangential to C; 7 and 2
are unit vectors along the r- and 'z-axes. Discretization is
carried out by assuming that ¥ and ¥* are linear func-
tions of r and z within each triangle.

B. Boundary Conditions

On metal surfaces, the boundary conditions are

a *
=0 —- (15a)
and
E-ds=0-Y X7,ds
I 9V \
=0 |—-r*—~F+r2—F—mr¥*z|-ds=0. (15b)
dz ar

On magnetic surfaces (these are symmetry planes where
z = constant), boundary conditions may be expressed as
follows:

m/o¥* v v
BQ:—O—);‘E( a7 —‘m7)+k27= (163)
A ¥ *
B,=0————m— 0. (16b)

The boundary condition (15b) is imposed through the first

ar I av
)f-d§+9$cr28—z‘-d§
Z

5 a*
- r—é-z——mr dz

) IV 1)

]d9=0

contour integral of (13); this is done by omitting the
contribution to the contour integral of the section of C
which is along the metal surface. Boundary conditions
(16a) and (16b) are imposed in the same way through the
second contour integrals of (14) and (13), respectively.
(This method of imposing boundary conditions is a stan-
dard one in finite elements and is the one used in the
SUPERFISH program.) For the boundary condition (15a),
no efficient analogous procedure was found; we therefore
imposed it explicitly. Finite-difference methods for arbi-
trary meshes have been the subject of many studies
[31]-[35]. The method we have used to obtain a finite-dif-
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TABLEI
MobEs: 0-9000 MHz. CaviTy: CYLINDER (FIG. 1).

Calculated Frequencies

Analytical (MHz)

Frequencies
Modes (MHz) 280 mesh points 760 mesh points

A =0 A+0 A =0 A#0

ZERO 1044.62
ZERO 3659.10
TEo1) 4802.57 4799.95(+2.62) 4799.86(+2.71) 4801.45(+1.12) 4801.31(+1.26)
™My g 4900.76 4892.02(+8.74) 4892.65(+8.11) 4897.96(+2.8) 4898.23(+2.53)
T™™211 6211.88 6205.27(+6.61) 6208.08(+3.8) 6209.73(+2.15) 6209.68(+2.2)
ZERO 6559.74
TEp21 7451.37 7426.55(+24.82) 7421.70(+29.67) 7441.10(+10.27) 7440.09(+11.28)
TMa 20 8032.31 8011.26(+21.05) 8012.18(+20.13) 8027.10(+5.21) 8027.19(+5.12)
TEp12 8171.58 8191.85(-20.27) 8214.99(~43.41) 8179.20(~7.62) 8184.11(~-12.53)
TMp oy 8893.15 8876.86(+16.29) 8877.92(+15.23) 8889,.11(+4.04) 8889.02(+4.13)

ference expression for the derivative was based on the
least-square principle and was applied to the irregular
triangular mesh of the SUPERFISH code. This technique
has already been the object of some studies [36], [37]. The
method we used is similar to the one used in the COM-
PELL [38] code and therefore will not be discussed here.

C. System of Equations

Following discretization, we end up with a tridiagonal
block system of equations which we solve, as in SUPER-
FISH [21], by a Gaussian block elimination process.

D. Driving Current

The discretization procedure leads to a set of homoge-
neous difference equations. As in SUPERFISH, an inho-
mogeneous term is introduced on the right-hand side of
this system of equations by demanding that at a given
mesh point (driving point)

By=1or B, =1.

(17)
At this point, it should be mentioned that the analysis
leading to (3) remains valid even in the presence of ficti-
tious magnetic charges and currents (driving current). Be-
cause of that, resonant frequencies have been found by

using a root-finding algorithm modeled on the one used in
the SUPERFISH code.

VI

One of the objectives of the tests we are about to
describe was to examine the problem of gauge fixing. Is
the gauge freedom described in Section III transferred to
the grid solution? If this is the case, then one would have
to fix the gauge as suggested in (7) or (8) in order to get a
unique solution for a given physical mode. The other
objective was obviously to verify the accuracy with which
eigenfrequencies could be calculated. Tests [23] were done

TEST CASES

with several geometries and modes; only some of these
results are given here.

A. Modes of a Cylinder

All m =2 modes up to 9000 MHz were calculated with
280 and 760 mesh points for the cylindrical cavity shown
in Fig. 1 (boundaries BB’ and A4A’ were considered
metallic surfaces and R=5 cm, L =3.927 cm). We first
calculated these modes by imposing that ¥ * =0 (¢, =0 in
(7)) on the upper boundary BA; numerical results agreed
very well with the analytical ones given in (9) and (10) with
A= 0. Results are shown in Table I in the columns headed
A = 0. The same modes were then calculated without fixing
the gauge. Here, (15a) is imposed instead of ¥* =0 along
BA; again, numerical and analytical values agreed very
well but this time with 4 # 0. Results are shown in Table I
in the columns headed A # 0. Physical modes have there-
fore been calculated in two different gauges.

A first observation is that in all cases given in the
columns headed 4=+ 0, the gauge has been fixed through
the discretization process. A second observation is that
resonant modes (ZERO) found which did not correspond
to physical modes were actually zero-field solutions.
Numerical results agreed very well with the analytical
solutions given in (6); zero modes were not observed with
760 mesh points. However, we cannot exclude the possibil-
ity of having missed them, although we have looked through
the whole 9000-MHz spectrum by steps of 50 MHz. Before
going any further, it must be said that we do not have a
complete understanding of how the truncation errors asso-
ciated with discretization manage to fix the gauge; how-
ever, we did observe that the values of the gauge constant
varied with the mesh size and the discretization method
used for boundary conditions. We believe that the type of
mesh used (triangular, rectangular, ---) would also be a
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factor contributing in fixing the value of 4. Although we
were successful in fixing the gauge for a cylinder, for more
complicated geometries the methods proposed in (7) and
(8) prove to be less successful; we believe that since the
gauge is being fixed through the discretization process, by
attempting to impose (7) or (8) we might be overspecifying
the problem. The conclusion is therefore that there is no
need to fix the gauge since it is being fixed through the
discretization process.

B. Cavities of Complex Shape

Let us now consider the Mainz cavity shown in Fig. 3.
This cavity is used in the microtron at the University of
Mainz and has a 7/2 TM;;, mode frequency of 2.45 GHz.
It is an on-axis-coupled cavity. In Table II, results [27]
from the URMEL code {1] and our code (HERTZ) are
compared with measured values [28]. All modes are dipole
modes (m =1). On the right-hand side of this table, the
boundary condition on planes A4’ and BB’ are given; M
stands for a magnetic surface and E for a metallic one. In
both cases, approximately 700 mesh points were used. For
magnetic surfaces, we have considered two cases: in one
case the gauge was fixed through the discretization pro-
cess, in the other (results shown in parentheses), the prob-
lem was solved in the gauge satisfying (8). For all the other
modes, the gauge was fixed through the discretization
process.

Finally, we consider the cavity shown in Fig. 4; this is
the PIGMI 8 =.8, frequency = 2380 MHz cavity. In Table
111, results [27] from the URMEL, ULTRAFISH [29], and
our own code are compared with measured values [29];
some of the experimental values are not measured but
extrapolated from measured points, since some modes are
forbidden by end plates; these values are preceded by =
(this remark concerning extrapolated values was taken
from Iwashita’s technical note [29]). Boundary conditions
are indicated as in Table II. Here again, differences be-
tween measured and calculated frequencies are shown in
parentheses. In all cases, the gauge was fixed through the
discretization process.

Let us conclude this section with a few remarks. When
using gauge fields in a numerical calculation, one faces the
problem of uniqueness. The use of the magnetic vector
potential A4 for the numerical solution of three-dimen-
sional problems in magnetostatics has initiated, in the last
few years, several studies concerning the uniqueness prob-
lem [39]-[40]; central to this question is the specification
of the divergence of 4. As we have shown in this paper,
when using Hertz potential for cavity problems, the ques-
tion of uniqueness presents itself differently. The methods
suggested in (7) or (8) were also meant to ensure unique-
ness. However, as our results showed, these proved unnec-
essary; in fact, in some cases one might be overspecifying

!The modes we used for comparison are the ones which, according to
the authors of these measurements (H. Herminghaus and H. Enteneuer),
were believed to be the most accurately measured (private communica-
tion from K. C. D. Chan).
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TABLE II
Mainz CAvITY

Boundary Conditions

Measured URMEL HERTZ
(MHz) (MHz) (MHz) plane AA'  plane BB'
4179. 4178.(+1.) 4180.(~1.) E E
5892. 5909.(~17.) 5915.(=23) M E
(5906.)
6785. 6704.(+81.) 6702.(+83.) E E
8262. 8130.(+132.) 8130.(+132.) M E
(8115.)
11215. 11169.(+46.) 11232.(-17.) E E
A
B
A , Z-AXIS
8

Fig. 3. Mainz cavity.

BI

éli
—_— — — Z-AXiS

Fig. 4. PIGMI cavity.

the problem by imposing such conditions. As a conse-
quence of discretization, the zero-field spectrum is no
longer continuous; nonuniqueness can only occur if a
resonant zero mode coincides with a resonant physical
mode. Our results suggest that this never occurs. If it did
happen, the methods proposed in (7) or (8) would remove
the numerical difficulty. We had expected that by decreas-
ing the mesh size the number of zero modes would increase
since we are, in fact, approximating a solution (the zero-
field) whose spectrum is continuous. However, results given
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TABLE III
PIGMI Cavity
Boundary Conditiong
Mode Measured  URMEL ULTRAFISH HERTZ
(MHz) (MHz) (MHz) (MHz) plane AA' plane BB'
and CC'
My g 2102.5  2096(+7) 2110.0(-8) 2093.9(+9) E E
TM 1 =2500 2462(+38)  2496.3(+4) 2493.5(+6) M E
TE;;g9 =760 777(-17) 775.2(-15) 768.6(-9) M M
TE; i 1299.3  1290(+9) 1314.6(~15)  1289.5(+10) E M
Ty e  2765.1  2752(+13)  2767.3(-2) 2761.4(+4) E E
TMyy  ~2800. 2759(+41)  2790.9(+9) 2790.4(+10) M E
TEppg =1540. 1564(-4) 1540.0(0) 1528.9(+10) M M
TEpif  2117.6  2101(+17)  2133.8(-16)  2112.4(+5) E M
TE3,q =2280. 2298(~-18)  2290.9(-11)  2289.8(-10) M M
2894.1  2875(+19)  2918.5(-24)  2884.1(+10) E M

TE3 )7

in Table I do not confirm this expectation; more cases
need to be studied before drawing any firm conclusion on
this particular point. Finally, let us add that gauge fixing
through discretization has also been reported with a model
based on the magnetic vector potential for the solution of
3-D eddy current problems [30].

VIL

In this paper, a solution of the cavity problem in terms
of a two-component magnetic Hertz vector has been ex-
amined; empty cavities were considered. The main diffi-
culty associated with the use of such a representation in a
numerical calculation is that of gauge fixing. Analytically,
we have shown that for both two- and three-dimensional
problems, the physical solution is defined only within a
zero-field solution whose frequency spectrum is continu-
ous. In order to study what happens in the grid space; we
have used the model to solve the problem of axially
symmetric cavities. The main results are as follows.

1) Results obtained are good. We believe that the accu-
racy of frequencies could be increased by improving the
least-square method used to approximate one of the
boundary conditions (E, = 0).

2) The gauge is fixed by the discretization procedure.
This can be understood from the observation that follow-
ing discretization the spectrum of zero-field solutions is
discrete; the gauge invariance is not carried over to the
grid space.

3) The vector Helmholtz equation has been solved
without any constraints; as for boundary conditions, only
the tangential components of the electric (on metallic
surfaces) and of the magnetic (on magnetic surfaces) fields
were required to be zero.

4) The only nonphysical resonant modes found were
easily identified as zero-field solutions.

In the light of the results obtained for the two-dimen-
sional case, we expect that if applied to three-dimensional
problems the gauge would also be fixed through the discre-
tization procedure with zero-field solutions as the only
nonphysical modes. Although results are encouraging, it is

CONCLUSIONS

clear that in order for a Hertz potential formulation to
become an effective alternative to field-component formu-
lations, more work needs to be done. The process by which
the gauge is fixed through the discretization procedure
needs to be better understood; it also remains to be
discovered whether these zero modes can be eliminated by
imposing some sort of constraint.
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